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ABSTRACT 

   Most of the methods in computational sequence analysis are essentially statistical methods. Identifying 

MLCS (Multiple Longest Common Subsequence) is a NP-hard (Non-Deterministic Polynomial time) sequence 

analysis problem. This can be solved using the decoding methodology of the probabilistic model called HMM 

(Hidden Markov Model). This paper proposes a statistical based algorithm called Decode_HMM_MLCS. It applies 

the key task of Decoding HMM i.e to determine “the most probable path of ‘characters occurrence’ in a given 

sequence”, by using Viterbi algorithm. The decoding process of HMM primarily identifies the similar regions 

between the sequences. MLCS occurs only in these similar regions. The proposed algorithm Decode_HMM_MLCS 

identifies required MLCS in linear time and space complexity. 
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1. INTRODUCTION 

     The challenge in computational sequence analysis is to organize, classify and parse the immense richness 

of sequence data. Most of the methods in computational sequence analysis are essentially statistical methods. These 

methods make use of probabilistic theory. Identifying MLCS (Multiple Longest Common Subsequence) is a NP-

hard (Non-Deterministic Polynomial time) sequence analysis problem. This can be solved using the decoding 

methodology of the probabilistic model called HMM (Hidden Markov Model). 

 This paper is organized as given below. Section 2 defines HMM and MLCS methods. Section 3 proposes a 

new algorithm called Decode_HMM_MLCS to identify MLCS.  Section 4 discusses about the implementation and 

analyses the proposed   algorithm DECODE_HMM_MLCS. Section 5 provides the conclusion. 

2. HMM AND MLCS METHODS  

2.1. Hidden Markov Model (HMM): Hidden Markov Chain generates sequences in which the probability of a 

symbol depends on previous symbol. It can be represented in graphically as a collection of “States”, each of which 

corresponds to a particular residue with arrows between the states (Rabiner and Juang, 1986; Stolcke and 

Omohundro, 1993).  

 The Markov Chain model (Fujiwara, 1994) for a DNA sequence with start and end positions is shown in 

Fig.1. 

 
Fig.1.Markov Chain Model for DNA sequence 

The key property of Markov chain is that the probability of each symbol xi depends only on the value of the 

preceding symbol xi-1 and not on the entire previous sequence. This property helps to reduce the number of 

comparisons in sequence analysis. 

The probability parameter of HMM are Transition Probability and Emission Probability (Durbin, 1998). The 

Transition Probability is defined as the probability of certain residue following another residue or one state following 

another state. This can be represented as 

 ast = p (xi = t  / xi-1  = s) 

In general, it is defined as aij = xij / ∑  xik 

 The Emission Probability is defined as the probability that symbol “b” is seen when in state k.  

 i.e. ek (b) =  p (xi = b / πi = k), where πi  is the ith state in the path π. 
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 The probability of emitting a symbol at a state is either 0 or 1. In general, the emission probability need not 

be 0 or 1. The sample DNA sequence is as shown in table 1. 

Table.1.Sample DNA sequence 

Sample DNA Sequence for the GC-rich content 

{ "A" ,"A", "G", "C", "G", "T", "G", "G", "G", "G", "C", "C", "C", "C", "G", "G" ,"C", "G", "A",  "C", 

"A", "T", "G", "G", "G", "G", "T", "G", "T", "C" } 

 The transition matrix for the sample sequence in table 2. 

Table.2.Transition Matrix for the sample Sequence 

 AT – rich GC-rich 

AT - rich 0.7 0.3 

GC - rich 0.1 0.9 

 The emission matrix for the sample sequence in table 3. 

Table.3.Emission Matrix for the sample Sequence 

 A C G T 

AT – rich 0.39 0.10 0.10 0.41 

GC – rich 0.10 0.41 0.39 0.10 

 Thus Hidden Markov Chain helps to model the DNA sequence and the transition and emission parameters 

help to evaluate the existence of a DNA sequence in the model. 

2.2. HMM Applications in recent biological research: HSMM (Hilt, 2010) is a semi Hidden Markov model which 

incorporates the state duration information to identify genes. It also uses Baum-Welch algorithm for modelling the 

distribution on state intervals that are geometric. It also provides “Side” (extra) information for sequence segment 

homology maps.  

 Zhai (2010) identify motif using HMM. They use HMM implicitly modelling motif occurrence along 

genomic sequences. The estimation parameters are calculated using Poisson distribution for smaller number of 

occurrences of motif instances and normal approximation for larger number of occurrences of motif instances.  

 DNA base calling (Timp, 2012) is difficult in Nanopore sequencing (Timp, 2010), a promising third 

generation DNA sequencing. The difficulty is that resolution of signal/noise ratio is limited. The researchers use 

HMM Decoding by Viterbi algorithm to produce high accuracy in resolution, even with a poor signal/noise ratio. 

 Multi-Stream LSTM-HMM decoding (Wollmer, 2011) uses HMM decoding for noise robust keyword 

spotting in Automatic Speech Recognition (ASR) systems. ASR can be used in segment identification of DNA 

sequences. 

2.3. Multiple Longest Common Subsequence (MLCS): The general description of DNA sequence is as follows: 

A = {a1, a2, ….ana} B = {b1, b2, ….bnb} C = {c1, c2, ….cnc}where A, B, C represent the sequences and ai,bi, ci 

represent the basic units of the sequence, at positions i, whose elements are obtained from the set Vq = { 0, 1…. q – 

1}. Typically,q = 4 and V4 = { a, c, g, t} if A,B and C are DNA sequences.  

 A sequence Z = {z1, z2…. zn } is called Multiple Longest Common Subsequence (MLCS) (Hirschberg, 1975), 

(Hirschberg, 1977), (Rick, 1994) and (Kumar & Rangan, 1987) of other sequences A = { a1, a2…. an }, B = { b1, 

b2…. bn } ……. K = {k1, k2…. kn} and A, B….K are the super sequences of Z denoted as Z ⊆ {A, B, …. K },  if 

there exists integers 1 ≤ j1 ≤ j2 … ≤ jn ≤ m such that Z1 ⊆ { aj1, bj1, cj1 … kj1}, Z2 ⊆ { aj2, bj2, cj2 … kj2} ….Zn ⊆ { ajn, 

bjn, cjn … kjn} ≤ m 

3. PROPOSED DECODE_HMM_MLCS ALGORITHM 

 The key task of HMM is to determine “the most probable path of characters occurrence in a given sequence”. 

This can be obtained by experimenting/applying the given sequence into the Hidden Markov Model. This process is 

called as Decoding of HMM. This HMM is defined by the probability parameters called Transition and Emission 

matrices.   

 MLCS shares the longest common subsequence between two or more sequences. The key process to identify 

MLCS is identifying common sharing portion between the sequences. The decoding process of HMM primarily 

identifies the similar regions between the sequences. MLCS occurs only in these similar regions. Hence the required 

MLCS can be identified through the decoding process of HMM. 

 This algorithm contains three parts, namely (i) Transition and Emission matrices formation for the given set 

of sequences (ii) Apply Decoding of HMM to determine the most probable path for each sequence using Viterbi 

algorithm (Viterbi, 1967) (iii) Identification of MLCS using the results produced by part (ii). The pseudo code for 

proposed algorithm Decode_HMM_MLCS.  

  

https://en.wikipedia.org/wiki/Less_than_or_equal_to
https://en.wikipedia.org/wiki/Less_than_or_equal_to
https://en.wikipedia.org/wiki/Less_than_or_equal_to
https://en.wikipedia.org/wiki/Less_than_or_equal_to
https://en.wikipedia.org/wiki/Less_than_or_equal_to
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Fig.2.Pseudeo code for Decode_HMM_MLCS () 

//Decode_HMM_MLCS algorithm to find MLCS 

Procedure Decode_HMM_MLCS() 

{ 

// s1 are the sequences of length_n 

  {PS1_AA, PS1_AT, PS1_AG, … PS1_GG} = 0  

// Are the 16 possible probabilities for the length_2 pattern in Seq_1 

 

//Splitting the sequence s1 into consecutive sub_patterns of length_2 

// To count the total number of occurrences for length_2 patterns 

For i = 0 to n-1 

   { 

       X = s1.substring (i, i+1); 

           switch (x) 

                  { 

                     Case “AA” :  

                              { PS1_AA = PS1_AA + 1; 

                                 break; 

                              } 

                    Case “AT” :  

                             { PS1_AT = PS1_AT + 1; 

                                 break; 

                              } 

                    Case “AC” :  

                              { PS1_AC = PS1_AC + 1; 

                                 break; 

                              } 

                     Case “AG” :  

                             { PS1_AG = PS1_AG + 1; 

                                 break; 

                              } 

                       ……………………………………… 

                       ……………………………………… 

                       ……………………………………… 

                       Case “GG” :  

                             { PS1_GG = PS1_AG + 1; 

                                 break; 

                              } 

                           } End Switch case 

                         } End for i 

//To calculate the total occurrence of each state   

Row1_count = PS1_AA+ PS1_AT+PS1_AG+PS1_AC; 

Row2_count = PS1_TA+ PS1_TT+PS1_TG+PS1_TC; 

Row3_count = PS1_CA+ PS1_CT+PS1_CG+PS1_CC; 

Row4_count = PS1_GA+ PS1_GT+PS1_GG+PS1_GC; 

// To calculate Transition matrix for sequence s1 

       trans_matrix[0][0] = PS1_AA / Row1_count; 

       trans_matrix[0][1] = PS1_AT / Row1_count; 

       trans_matrix[0][2] = PS1_AC / Row1_count; 

       trans_matrix[0][3] = PS1_AG / Row1_count; 

       trans_matrix[1][0] = PS1_TA / Row2_count; 

       trans_matrix[1][1] = PS1_TT / Row2_count; 

       ……………………………………………… 
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       ……………………………………………… 

       ……………………………………………… 

       trans_matrix[3][2] = PS1_GG / Row4_count; 

       trans_matrix[3][3] = PS1_GC / Row4_count; 

// To define emission matrix AT-rich, GC-rich content in the sequence 

// Row-0 represents AT-rich, Row-1 represents GC rich for the 

// columns nucleotides { A, C, G, T } 

       emission_matrix[0][0] = 0.39; 

       emission_matrix[0][1] = 0.1; 

       emission_matrix[0][2] = 0.1; 

       emission_matrix[0][3] = 0.41; 

       emission_matrix[1][0] = 0.1; 

       emission_matrix[1][1] = 0.41; 

       emission_matrix[1][2] = 0.39; 

       emission_matrix[1][3] = 0.1; 

// Calling Viterbi algorithm 

     Viterbi_function(sequence, transitionmatrix, emissionmatrix); 

} End Decode_HMM_MLCS 
The pseudeo code of Decode_HMM_MLCS calculates the transition matrix for each sequence. The AT-rich 

row of emission matrix for the columns {A, C, G, T} is assigned with the values {0.39, 0.1, 0.1, 0.41} respectively, 

where the columns A and T have been assigned with higher probability_threshold. Similarly, in GC-rich row of 

emission matrix, columns G and C have been assigned with higher probability_threshold. Finally it calls Viterbi 

algorithm to generate the most probable path for characters occurrence in a given sequence. 

4.  ANALYSIS OF DECODE_HMM_MLCS 

4.1. Implementation details and Illustration of Decode_HMM_MLCS algorithm: Decode_HMM_MLCS 

algorithm is implemented using “R” (ver 3.2.1) programming language on a Windows 10 machine with i7 Intel 

processor 2.33 GHZ, 16 GB RAM. The sample DNA sequences and the respective Decoding of sequences using 

Viterbi algorithm are given in Table 4. The transition and emission matrices for the sample sequences in    Table 4 

are given in Table 2 and Table 3.  

Table.4.Sample DNA Sequences with Decode_HMM_MLCS runtime results 

Sequence ID : 1 

Sequence : 

 "A", "T","C","G","G","G","G", "A", "T", "A", "T", "A", "T", "A", "G", "C","G", "C", "T", "C", 

"C", "C", "G","A", "C", "A", "A", "A", "T", "C" 

Decoding of Sequence # 1: 

"Positions 1 - 2 →  “AT-rich" 

"Positions 3 - 8 →  “GC-rich" 

"Positions 9 - 14 →  “AT-rich" 

"Positions 15 - 26 →  “GC-rich" 

"Positions 27 - 29 →  “AT-rich" 

"Positions 30 - 30 →  “GC-rich" 

Sequence ID : 2 

Sequence :  

"T", "G", "C", "T", "A" ,"T" ,"G" ,"G", "T", "C", "G", "A", "A", "T", "G","G", "G", "G", 

"C","T", "A", "A", "C", "C" ,"G" ,"A", "G", "G", "C", "G" 

Decoding of Sequence # 2: 

"Positions 1 – 1  →  “AT-rich" 

"Positions 2 - 4 →  “GC-rich" 

"Positions 5 - 6 →  “AT-rich" 

"Positions 7 - 12 →  “GC-rich" 

"Positions 13 - 14 →  “AT-rich" 

"Positions 15 - 20 →  “GC-rich" 



ISSN: 0974-2115 

www.jchps.com                                                                                       Journal of Chemical and Pharmaceutical Sciences 

January-March 2016 63  JCPS Volume 9 Issue 1 

"Positions 21 - 22 →  “AT-rich" 

"Positions 23 - 30 →  “GC-rich" 

Sequence ID : 3 

Sequence : 

 "A", "C", "T", "G", "T" ,"T", "T", "T" ,"A", "G", "T", "C", "A", "G", "G", "G", "G", "C", "G", 

"C", "G", "T", "C", "C", "G", "G", "C", "A", "G", "C 

Decoding of Sequence # 3: 

"Positions 1 - 1 →  “AT-rich" 

"Positions 2 - 2 →  “GC-rich" 

"Positions 3 - 3 →  “AT-rich" 

"Positions 4 - 4 →  “GC-rich" 

"Positions 5 - 9 →  “AT-rich" 

"Positions 10 - 10 →  “GC-rich" 

"Positions 11 - 11 →  “AT-rich" 

"Positions 12 - 12 →  “GC-rich" 

"Positions 13 - 13 →  “AT-rich" 

"Positions 14 - 30 →  “GC-rich" 

From the results of Decoding Sequences in Table 4 the DNA segments of length > 5 are sorted out and shown in 

Table 5. 

Table.5.Decode_HMM_MLCS runtime results (DNA Segment length > 5) 

Sequence DNA Segment AT-rich GC-rich DNA Segment Length 

1 3,8  y 6 

 9,14 Y  6 

 15,26  y 12 

2 7,12  y 6 

 15,20  y 6 

 23,30  y 8 

3 14,30  y 16 

 It can be inferred from the Table 5 that MLCS occurs only at the DNA segment regions { (15 – 26), (23 – 

30), (14 – 30) } of sequenceID 1,2 and 3 respectively. Grpahical representation of this result is shown in Fig 3. 

 
Fig.3.Decode_HMM_MLCS results 

 The Decode_HMM_MLCS runtime graphical results show that the DNA segment region 15 to 30 of the 

given three sequences contain GC-rich content. Hence, MLCS occurs only within this region. Thus by comparing 

only the similar regions, Decode_HMM_MLCS reduces the search space from the whole region to similar regions 

only. This leads to less number of comparisons and improves the time and space complexity. 

4.2. Time and Space complexity: If “L” is the length of the sequence, then the time complexity for 

Decode_HMM_MLCS is defined as  

T (n) = Q2 + Q2 + | Q2 | L, 

Where Q is the number of states and Q2 is the number of calculations needed to form the transition matrix, 

which is same as emission matrix. Decoding of sequence requires “Q2 L” runtime. Hence, the time complexity for 

Decode_HMM_MLCS is O (|Q2| L). And the space complexity is O (| Q | L).  
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5. CONCLUSION  

      This paper proposes a statistical based algorithm called Decode_HMM_MLCS. HMM generates the current 

state symbol “xi” with respect to the previous state symbol “xi-1”, in the forward direction. MLCS shares the longest 

common subsequence between two or more sequences. The key process to identify MLCS is identifying common 

sharing portion between the sequences. The decoding process of HMM primarily identifies the similar regions 

between the sequences. MLCS occurs only in these similar regions. Hence the required MLCS can be identified 

through the decoding process of HMM.  

 Decoding process of HMM requires linear time and space complexity. Hence the proposed algorithm 

Decode_HMM_MLCS require linear time and space complexity. 
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